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Abstract 
 

The ever-increasing processing speed and computational power of computers and simulation 
systems has led to correspondingly larger, more sophisticated representations of evacuation 
traffic processes.  Today, micro-level analyses can be conducted for megaregion-level hurricane 
evacuations involving millions of vehicles, spanning thousands of miles of roadway over multiple 
states, lasting over several days, and incorporating the intermodal exchange of evacuees.  
However, the effort required to build such models and the volume of output data they produce 
also presents difficulties for analysts as they code networks, generate demand, model control 
elements and then calibrate results and interpret output.   

The goal of this paper was to quantify and describe the operational conditions of evacuation 
traffic “network productivity.”  The concepts suggest that maximum production, and therefore 
trip completion, is realized when the network achieves the highest rate of vehicles-miles traveled 
in a time interval.  In this research, a megaregion evacuation model was used to quantify the 
average network velocity, demand and network length which was necessary to estimate the 
network productivity. The results showed that network productivity exhibited a peaking 
characteristic. This suggested that network productivity can be maximized on a macroscopic scale 
as a function of demand. With knowledge of the optimal network demand, emergency planners 
can develop evacuation management plans which reach and maintain traffic at an optimal 
demand level. When this optimal demand level is exceeded, evacuees are likely to experience 
inordinately lengthy delays.  Conversely, conditions with demand levels below the optimal level 
will result in reduced overall network productivity and fewer trips completed per time interval.  
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1. Introduction 
 

The past 20 years has seen the emergence of traffic simulation as an effective tool for the 
planning and analysis of evacuations.  Some of the earliest application of simulation began with 
the use of macroscopic modeling systems for evacuation time estimates for nuclear power plant 
emergencies in the late 1970’s [1]. More recently, the ever-increasing processing speed and 
computational power of computers and simulation systems has led to correspondingly larger, 
more sophisticated, and detailed representations of evacuation traffic processes.  Today, micro-
level analyses are able to be conducted for megaregion-level hurricane evacuations that span 
multiple states over several days and include the intermodal exchange of evacuees, millions of 
vehicles, and thousands of miles of roadway [2].  Such models are useful for both theoretical 
study and practical application because they are able to demonstrate the influence of various 
assumptions and policies, as well as capacity and demand management strategies. This can be 
used to guide emergency response decision-making on multi-state regional levels. However, the 
effort required to build such models and the volume of output data they produce also present 
difficulties for analysts; as they code networks, generate demand, model control elements and 
then calibrate results and interpret output.   Collectively, these issues create a classic 
transportation “Big Data” problem. 

The research described in this paper employed a microscopic simulation model of the Gulf 
Coast megaregion of the United States. The megaregion model was originally developed to 
examine the effects of temporal and spatial evacuation strategies that regulated demand and 
added road capacity. The novel approach described in this paper used output performance 
measures from this model to maximize the “trip completion rate” of the network. Geroliminis 
and Daganzo (3) showed that trip completion rate (the rate at which vehicles arrive at their 
destination) is proportional to “network productivity.” Where productivity, as defined by the 
researchers, is the product of average flow and network length and is quantified in vehicle-miles 
per hour (vmph). This suggest that maximum production and therefore trip completion, is 
realized when the network achieves the highest rate of vehicles-miles traveled in a time interval; 
i.e., when the most vehicles are traveling at the fastest speed.  It is theorized that trip completion 
rate and network productivity can be used as simple but highly descriptive measures of efficiency 
that can be applied by both transportation and emergency management officials to assess the 
overall ability of a regional road network to safely and efficiently permit evacuees to move from 
higher risk areas to lower risk areas.  

In this research, the megaregion evacuation model was used to generate average travel speeds 
corresponding to varying disaster scenarios, traffic management plans and evacuee demand. The 
average travel speed (ATS) was plotted against demand for each scenario. From this plot, four 
functions (linear, parabolic, logarithmic and sigmoidal) were fitted to the data points to 
estimate 𝑣(𝑛), a function relating the average travel speed of a network to and total network 
demand. Four functions were selected because the true form of the 𝑣(𝑛) function is unknown. 
Therefore, to estimate 𝑣(𝑛), a series of functional forms had to be tested. The network 
productivity function was used to identify the optimum evacuation demand corresponding to the 
maximum trip completion rate. It is thought that this information can be used by decision makers 
to select traffic management strategies that meter network demand as close as possible to an 
optimal level. When used in conjunction with phased evacuation strategies or evacuation route 



5 

 

metering, the network demand can be manipulated to ensure the maximum evacuation 
productivity and trip completion rate.  

The following sections of this paper provide background and context to the model, the need 
for this research, and describe the research methods, its results and ways that the techniques 
described here could be applicable to any location and set of conditions; routine or emergency. 
Although this research focuses on the concept of network productivity and its relationship to trip 
completion rate to address some of the “Big Data” problems, associated with evacuation 
modeling, the results can be applied to virtually any large-demand transportation condition, 
including planned major events. The Methods section describes the megaregion model and the 
theoretical proofs used to generate the network productivity function. The Experimental Results 
section demonstrates the model fit and intuitive nature of the theory application. The Validation 
Network section uses a theoretical grid network to validate the results observed in the 
megaregion model and the Conclusion section discusses the research results, broader application 
and direction of planned and ongoing work. 

 

2. Research Background 
 

Over the past century the world has experienced an increasing pattern of urbanization and 
concentrated population growth that has led to the emergence of megaregions.  Megaregions 
are characterized by the merging of once separate cities into geographically large areas of 
continuous population [4]. Examples of megaregions in the United States (US) include the 
northeastern Atlantic seaboard area from Boston south through New York and Philadelphia then 
into Washington D.C. and the on the west coast from San Diego north through Los Angeles and 
into Santa Barbara.  Worldwide, significantly larger megaregions can be found especially in 
Europe, South America, and throughout Asia.  Megaregions share common political, geographic, 
cultural, economic, and historical ties.  They also share transportation linkages and susceptibility 
to natural and manmade disasters. An example of this was seen in the devastating effects of 
Super Storm Sandy on the US megaregion in 2012, the 2011 earthquake, tsunami and Natech 
nuclear power plant emergency in Japan, and Hurricanes Katrina and Rita which hit the Gulf Coast 
megaregion back-to-back in 2005. 

Transportation simulation modeling of a megaregion on a microscopic scale is currently an 
exploratory concept in traffic engineering. Modeling millions of individual vehicles and their 
interactions within a network was only recently, computationally possible without 
supercomputers. The advantages of microscopically modeling a megaregion are that it can 
demonstrate how small disturbances in traffic flow can propagate quickly throughout large 
networks if not mitigated properly. For example, a bottleneck on a freeway link that creates a 
queue to form on on-ramps, which then spills back onto arterial roadways causing surface street 
gridlock. At the demand levels generated in evacuations, this can happen within minutes. This 
phenomenon can be captured using meso or macroscopic models, but not with the detail and 
intricacies of a microscopic model. These smaller scale models allow for better understanding of 
the causes of breakdowns and congestion propagation.  

Among the first application of traffic simulation modeling to evacuation was a study conducted 
to estimate the evacuation time of Three Mile Island in Pennsylvania [5]. Later studies were 
focused on testing and evaluating evacuation management strategies such as contraflow [6] [7] 
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and phasing [8] on small urban networks. Research conducted on larger regional scales have 
typically used macroscopic traffic models and have been primarily focused on clearance and 
network delay [9] [10] [11].  Microscopic modeling on a city-wide scale has been used to test 
traffic management strategies and modeling techniques in the Houston and New Orleans area 
[12] [13]. More recent studies have been conducted on megaregion networks. Chiu et al. (2008) 
and Dixit et al. (2011a) conducted regional-scale simulation studies to evaluate regional impacts 
of various evacuation strategies for the Houston–Galveston area during Hurricane Rita and the 
Louisiana region during Hurricane Katrina, respectively [12] [13]. So and Daganzo (2010) 
developed priority rules for evacuation routes to increase efficiency [29]. Also, Daganzo and So 
(2011) proposed an evacuation network management strategy to maximizing performance [30]. 
Both of these works find that evacuation time is minimized when capacity, either of a route or a 
network is fully utilized. Recent research as been extended to megaregions. Zhang et al. (2013) 
modeled US Gulf Coast megaregion evacuation scenarios using macroscopic measures of 
performance under varying levels of demand and proactive evacuation traffic management 
strategies like contraflow [2]. Further megaregional study by Zhang et al. [21] [31] showed that 
by coordinating traffic demand inconsecutive time windows, the network traffic performance 
can be improved by 24% to as much as 64%. However, the optimization of evacuation demand 
management for complicated scenarios, such as multiday evacuations in urban or regional 
network, has not yet been undertaken. Because of this, the optimization of demand assignment 
pattern in regional evacuation remains as a significant challenge. 

The concept of traffic system productivity was first introduced by Daganzo (2005). In this work, 
flow-sums at evenly space intervals were used to provide an indication of vehicle-miles-traveled 
(VMT) and used as a proxy for productivity. Later, Daganzo (2007) showed the relationship 
between trip completion rate and the number of vehicles inside an urban network. This work led 
to the realization that network productivity was proportional to trip completion and a function 
of demand [3]. The relationship between productivity and trip completion was later showed to 
be constant using detector data and floating vehicle probes [16]. Experiments conducted on the 
Yokohama (Japan) and San Francisco road networks show that a stable MFD linking space-mean 
speed, flow, and density exists in large urban areas [22]. Since this early work, research has been 
conducted to show the existence of MFD in other countries including the US [23], Greece [24], 
France [25], etc. Mazloumian et al. (2010) shows that the relationship between network average 
flow and the variation of network density, i.e., average density and spatial variability of vehicle 
densities determine the shape of the MFD, and the MFD is also related to the number of full links 
[26]. Geroliminis and Sun (2011) also proves that spatial distribution of vehicle density in the 
network is one of the key components that affect the scatter of an MFD and its shape [27]. Zhu 
et al. (2012) verify that the shape of MFD curve is influenced by network topology, traffic 
demand, and traffic load pattern based on traffic data collected in Beijing, China [28]. 

 

3. Research Methodology 
 

The development of the evacuation productivity function for the megaregion network in this 
research was accomplished within a framework of several tasks. The first task was the building 
of a “base model” which incorporated the links, nodes and traffic control features of the 
megaregion road network as well as the traffic demand. The next task was the creation of a series 
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of evacuation scenarios of theoretical hazards with associated response conditions. The third task 
extracted the network average travel speed, and analyzed it within the context of the 
corresponding demand and response conditions. Curve fitting was then used to estimate a 
function relating average travel time and network demand, 𝑣(𝑛). In the fourth task, this function 
was used to compute the evacuation productivity function. This was then validated using a 
theoretical urban grid simulation network.  

 

3.1. Network Productivity 
 

Network productivity per unit length as formulated by Geroliminis and Deganzo (2008) was 
given in Equation (1). In this sense, productivity can be seen as the weighted average of link flows, 
essentially quantifying the efficiency of the network in transporting vehicles. The aim of this 
research is to quantify this measure for a megaregion evacuation to better understand the 
relationship between evacuation demand, network characteristics, and the overall evacuation 
performance. Link accumulation was the number of vehicles on a given link segment i with length 
𝑙𝑖 and density 𝑘𝑖, Equation (2). The established relationship between link flow 𝑞𝑖, link density 𝑘𝑖  
and travel speed on the link 𝑣𝑖  was given in Equation (3). Through substitution, the productivity 
of a single link was expressed in several forms, Equation (4). When the velocity was represented 
as a continuous function of demand 𝑣(𝑛), the productivity was estimated on a network level, 
Equation (5). This relationship can therefore be used to express network productivity per unit 
length as defined in Equation (6). 

 

     𝑞𝑤 =
∑ 𝑞𝑖𝑙𝑖𝑖

∑ 𝑙𝑖𝑖
 

 
     𝑛𝑖 = 𝑘𝑖𝑙𝑖  

 
     𝑞𝑖 = 𝑣𝑖𝑘𝑖 

 
     𝑞𝑖𝑙𝑖 = 𝑣𝑖𝑘𝑖𝑙𝑖 = 𝑣𝑖𝑛𝑖  

 

     ∑ 𝑣𝑖𝑛𝑖
𝑖

≅ 𝑣(𝑛)𝑛 

 

     𝑞𝑤(𝑛)  =
∑ 𝑞𝑖𝑙𝑖𝑖

∑ 𝑙𝑖𝑖
=

∑ 𝑣𝑖𝑘𝑖𝑙𝑖𝑖

∑ 𝑙𝑖𝑖
=

∑ 𝑣𝑖𝑛𝑖𝑖

∑ 𝑙𝑖𝑖
≅

𝑣(𝑛)𝑛

∑ 𝑙𝑖𝑖
 

 

The remaining portion of the methodology aims to show through simulation that Equation (1) 
developed by Geroliminis and Deganzo (2008) was both mathematically and in practice, 
equivalent to Equation (6). The simulation model was used to quantify the average network 
velocity, network demand and network length which was necessary to estimate the network 
productivity.  

 
 
 
 

(1) 

(2) 

(3) 

(4) 

(6) 

(5) 
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3.2. Simulation Base Model Development 
 

A microscopic traffic simulation of a megaregion evacuation was developed to explore the 
applicability of the proposed network productivity formulation. The megaregion simulated in this 
study spanned New Orleans, Louisiana to Houston and Galveston Texas, and included the areas 
of Baton Rouge, Lafayette, Lake Charles and Beaumont. While not the most populated 
megaregion in the U.S., this area is growing in population and economic importance, as it serves 
as a major domestic energy hub for the nation. The region was selected based on its extensive 
history of transportation modeling, simulation study, and analysis conducted on hurricane 
evacuation.  

The megaregion model was coded in the TRAMSIMS traffic simulation system. Originally 
developed for travel forecasting and emission analysis, TRAMSIMS was used in this research 
because of its ability to generate and simulate synthetic populations based on actual census data, 
and create spatial and temporal traffic patterns. The development of the megaregion traffic 
simulation model in this project was accomplished within a framework of three primary tasks. 
The first was the creation of a “base model,” which included the link, node, and control features 
of the regional road network, and then its calibration and validation based on the 2005 Hurricane 
Katrina and 2008 Hurricane Gustav evacuations. The second step was to develop synthetic 
evacuee population based on 2010 census data. The third step the creation of a series of 
evacuation scenarios based on theoretical hazards and response conditions. TRAMSIMS is 
particularly suited for large scale evacuation traffic analysis because the roadway network is 
generated from geographic information system (GIS) shapefiles. This data was readily available 
from existing road network files developed by the Metropolitan Planning Organizations of the six 
major municipalities within the region. These six separate road networks were merged into one 
megaregion using GIS software. The “empty spaces” between these six regions were manually 
connected using various online and printed maps. This made lead to an accurate link-node 
network to build the remaining model components upon. The resulting megaregion network is 
depicted in Figure 1. A more detailed description of the megaregion model, its calibration and 
validation for the evacuation scenarios, can be found in Zhang, Spansel and Wolshon (2013) [2].  
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Figure 1: Gulf Coast Megaregion Network 

 

3.3. Evacuation Demand Forecast 
 

The evacuation demand generation; specifically evacuee origin, destination and departure 
time were also modeled in TRAMSIMS. The synthetic evacuee population was created using 2010 
US Census data. A mathematical representation of the population for each transportation 
analyses zone (TAZ) was generated to statistically match the demographic information contained 
in the US Census data. The TAZs were used to represent the evacuee origins in the model. For 
areas in between the six major areas of the megaregion, where TAZ information was not 
available, voting district (VD) information from the 2010 US Census was used. The methodology 
described by Cheng, Wilmot and Baker (2008), was used to represent the evacuee origins within 
these areas. The 2010 Census Summary File 1 (SF1) data was used to assign household and 
population values to each TAZ and VD.  

The evacuee departure time was modeled with a time dependent sequential logit model 
(TDSLM). This model was developed by Gudishala (2012) using 2008 Hurricane Gustav evacuation 
survey information. This model estimated the evacuation participation rate and departure times 
for each of the metropolitan regions and coastline areas in Louisiana and Texas. The evacuation 
participation rate generated varies from area to area in accordance with the levels of threat 
perceived from the hypothetical storms. 

The evacuee destination choice model was applied from research conducted by Cheng, Wilmot 
and Baker (2008). This model assigns a probability to each destination direction based on its 
distance from an origin, the level of hazard threat at the destination, and the population of the 
destination. This methodology employs a multinomial logit model (MNL) to estimate the 
destination choice probability for each evacuee. The MNL model was developed using survey 
information collected from 1999 Hurricane Floyd evacuees from South Carolina. Using the 
synthetic population TAZs and VD as origins and the MNL choice probabilities as destinations, an 
evacuation origin-destination (OD) was developed for each time-interval in accordance with the 
departure curve generated from the TDSLM. Vehicles are routed in TRANSIMS using the Router 
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and Simulator modules, capable of preforming static and dynamic user equilibrium routing 
strategies.  

 

3.4. Scenario Development 
 

The evacuation scenarios for this research were based on two historical hurricanes with tracks 
that affected the entire model region (Storm Track 1 and Storm Track 2) and three contraflow 
plans (No Contraflow Plan, Contraflow Plan 1 and Contraflow Plan 2). The demand levels of the 
evacuation varied based on the timing and level of threat posed by each storm. Storm Track 1 
was coupled with each of the three contraflow plans and was simulated at four different demand 
levels. Storm Track 2 was simulated using Contraflow Plan 2 and seven demand levels. This 
generated a total of 19 unique scenarios. 

Storm Track 1 was based on the track of 2008 Hurricane Gustav which made landfall in the 
megaregion just south of New Orleans, Louisiana. Strom Track 2 followed the track of an 
unnamed hurricane in 1914 that made landfall on the eastern side of the megaregion and 
traveled to the west [19]. The tracks of both hurricanes are illustrated in Figure 2. The storm 
tracks dictated the locations of shelters thus varying demand placed on individual links.  

 

 
Figure 2: Hurricane Tracks 

 

The MNL destination choice model developed by Cheng, Wilmot, and Baker (2008) was applied 
to the two storm track scenarios. The MNL model found that for storm track 1, most households 
prefer to evacuate to the west (55%) with the remaining households distributed approximately 
evenly between the East, North, Northeast and Northwest. The MNL results for storm track 2 
found an even distribution of evacuees to the West, North and Northwest with no evacuees 
preferring an Eastbound or Northeast bound destinations. This result was logical given perceived 
threat of storm track 2 
In additional to the No Contraflow Plan, two additional plans were evaluated in this research. 
Contraflow Plan 1 was derived from the actions taken by the Louisiana State Police and 

N 

Storm Track 1 

Storm Track 2 
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Department of Transportation and Development during (DOTD) the 2008 Hurricane Gustav 
evacuation of south Louisiana. Contraflow was used on several links beginning at 4:00am on the 
second day of a two-day evacuation. Contraflow Plan 2 was initiated on the same links as 
Contraflow Plan 1 but operated for the entire second day of the two-day evacuation. The 
operational time period and location of each contraflow plan are summarized in Table 1.Error! 
Reference source not found.  
 
 

Table 1: Contraflow Plan Implementation 

Road Name Start Time End Time 
Contraflow 

Plan 

Eastbound I-10 
between New Orleans 

to Laplace, LA 

4:00 am, first day 
of evacuation 

12:00 am, Second 
day of evacuation 

Plan 1 

Northbound I-10/I-
55  between 

Hammond, LA and 
Mississippi 

4:00 am, first day 
of evacuation 

12:00 am, Second 
day of evacuation 

Northbound I-59, 
north to the I-10/I-
12/I-59 interchange 

4:00 am, first day 
of evacuation 

12:00 am, Second 
day of evacuation 

Northbound I-49, 
on 
 I-10 

4:00 am, first day 
of evacuation 

12:00 am, Second 
day of evacuation 

Eastbound I-10 
between New Orleans 

to Laplace, LA 

12:00 am, first day 
of evacuation 

12:00 am, Second 
day of evacuation 

Plan 2 

Northbound I-10/I-
55  between 

Hammond, LA and 
Mississippi 

12:00 am, first day 
of evacuation 

12:00 am, Second 
day of evacuation 

Northbound I-59, 
north to the I-10/I-
12/I-59 interchange 

12:00 am, first day 
of evacuation 

12:00 am, Second 
day of evacuation 

Northbound I-49, 
on 
 I-10 

12:00 am, first day 
of evacuation 

12:00 am, Second 
day of evacuation 

 

Table 2 summarizes the test scenarios and showed the total demand generated by the 
hypothetical storms. It also displayed the average travel time estimated by the TRANSIMS 
simulation model. From Table 2 it is apparent that average travel speed (ATS) was inversely 
related to demand. As network demand increased, average travel speed (ATS) decreased. This is 
logical and would be expected in any network; emergency condition or daily peak hour.  
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Table 2: Evacuation Scenarios and Average Travel Speed (ATS) 

Scenario 
Storm 

Track 
Contraflow 

Plan 

Evacuation 
Demand 

(trips) 

 
Simulated 

ATS (mph) 

Scenario 1.0-1 1 No Plan 454,173 52 

Scenario 1.0-2 1 No Plan 494,654 49 

Scenario 1.0-3 1 No Plan 584,602 42 

Scenario 1.0-4 1 No Plan 674,518 31 

Scenario 1.1-1 1 Plan 1 454,173 48 

Scenario 1.1-2 1 Plan1 494,654 44 

Scenario 1.1-3 1 Plan 1 584,602 41 

Scenario 1.1-4 1 Plan 1 674,518 32 

Scenario 1.2-1 1 Plan 2 454,173 48 

Scenario 1.2-2 1 Plan 2 494,654 44 

Scenario 1.2.3 1 Plan 2 584,602 42 

Scenario 1.2-4 1 Plan 2 674,518 30 

Scenario 2.2-1 2 Plan 2 195,355 60 

Scenario 2.2-2 2 Plan 2 244,177 53 

Scenario 2.2-3 2 Plan 2 293,043 43 

Scenario 2.2-4 2 Plan 2 341,866 44 

Scenario 2.2-5 2 Plan 2 390,704 38 

Scenario 2.2-6 2 Plan 2 439,542 30 

Scenario 2.2-7 2 Plan 2 488,380 25 

 

4. Experimental Results 
 

To calculate the network productivity, an estimate of average network velocity as function of 
total demand was required, 𝑣(𝑛). This function was estimated by plotting the ATS simulated 
against the total demand and econometrically fitting a curve to the data points. Because the form 
of the 𝑣(𝑛) was unknown, four functions forms were evaluated: linear, parabolic, logarithmic 
(natural log) and sigmoidal; their general forms are given in Equations (7) through (10). While it 
cannot be known if the true form of the function 𝑣(𝑛) was one of the four fitted curves in this 
research, these functions fit sufficiently well to estimate the evacuation productivity function. 
The results of fitting the four functions to the ATS data, their parameters and resulting 𝑅2 values 
are shown in Table 3.  

 
Linear: 

     𝑣(𝑛) = 𝑎𝑛 + 𝑏 
 
Parabolic: 

     𝑣(𝑛) = 𝑎𝑛2 + 𝑏𝑛 + 𝑐 
 
Logarithmic:  

(7) 

(8) 

(9) 



13 

 

     𝑣(𝑛) = 𝑎𝑙𝑛(𝑛) + 𝑏 
 
Sigmoidal: 

     𝑣(𝑛) = 60(𝑎) (1 −
1

1 + 𝑒−𝑛+𝑏
) 

 
 

Table 3: Curve Fitting Results 

Scenario Linear Parabolic Logarithmic Sigmoidal 
 𝑎 𝑏 𝑹𝟐 𝑎 𝑏 c 𝑹𝟐 𝑎 𝑏 𝑹𝟐 𝑎 𝑏 𝑹𝟐 

1.0-1 

-9
.4

3
 

9
5

.5
3

 
(9

5
.5

3
) 

0
.9

9
 

-1
.9

1
 

1
2

.1
9

 

3
5

.9
0

 
(3

5
.9

0
) 

0
.9

9
 

-5
2

.1
8

 

1
3

2
.0

3
 

(1
6

8
.2

0
) 

0
.9

7
 

0
.8

4
 

7
.1

8
 

(5
0

.6
5

) 

0
.9

6
 

1.0-2 

1.0-3 

1.0-4 

1.1-1 

-6
.7

7
 

7
8

.6
3

 
(7

8
.6

3
) 

0
.9

6
 

-1
.4

7
 

9
.8

4
 

3
2

.8
1

 
(3

2
.8

1
) 

0
.9

7
 

-3
7

.4
9

 

1
0

4
.8

6
 

(1
3

0
.8

5
) 

0
.9

4
 

0
.9

4
 

6
.9

4
 

(5
6

.1
6

) 

0
.9

9
 

1.1-2 

1.1-3 

1.1-4 

1.2-1 

-7
.5

1
 

8
2

.4
4

 
(8

2
.4

4
) 

0
.9

6
 

-3
.0

9
 

2
7

.4
0

 

-1
3

.8
8

 
(-

1
3

.8
8

) 

0
.9

6
 

-4
1

.3
1

 

1
1

1
.0

9
 

(1
3

9
.7

2
) 

0
.8

8
 

0
.8

3
 

7
.3

4
 

(4
9

.6
7

) 

0
.9

7
 

1.2-2 

1.2-3 

1.2-4 

2.2-1 

-1
1

.4
1

 

8
0

.8
6

 (
8

0
.8

6
) 

0
.9

7
 

0
.3

0
 

-1
3

.4
6

 

8
4

.0
7

 
(8

4
.0

7
) 

0
.9

7
 

-3
6

.5
8

 

8
5

.2
1

 
(7

7
.4

2
) 

0
.9

6
 

1
.0

1
 

4
.3

8
 

(5
9

.9
7

) 

0
.9

3
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The fitted functions had 𝑅2 values in the range of 0.88 to 0.99, indicating the fitted curves were 
appropriately selected. In addition to the parameters 𝑎, 𝑏 and 𝑐 the value of the y-axis intercept 
is shown in parenthesis for each scenario. This value was the estimated average free flow speed 
of the network (predicted average travel speed when demand was equal to zero). In terms of 
model fit, functions which produced unrealistic estimates of the average free flow speed 
indicated poor model performance despite high 𝑅2 values. Examples of unrealistic estimates of 
average free flow speed were values greater than 100 mph or less than zero mph, as these values 
are outside the domain of realistic outcomes for free flow speed. Both the parabolic and the 
logarithmic function resulted in unrealistic estimates of free flow speed.  

Another indication of model fit was the consistency of the sign (positive or negative) of the 
parameter coefficient between scenarios. If the curve was an accurate representation of 𝑣(𝑛), 

(10) 
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then the sign for each parameter coefficient should be the same regardless of demand level, 
contraflow plan or storm track. Otherwise, the model would predict results that vary drastically 
between scenarios which, was not seen in the simulation results. Referring to Table 3, the 
parabolic function did not have consistent parameter signs between scenarios and is therefore a 
poor representation of 𝑣(𝑛). The fitted functions for 𝑣(𝑛) were plotted in Figure 3. 
 

 
Figure 3: Curve Fitting Results 

 

In addition to the fitted functions, Figure 3 also shows the simulated average travel speed for 
each scenario, providing a graphical representation of model fit. The figure illustrates the 
unrealistic estimates of free flow speed given by the logarithmic function and parabolic function. 
The effect of alternating parameter signs between scenarios was also evident in the graph of the 
parabolic function, with three of the four scenarios producing concave down functions and the 
forth producing a concave up function.   

Using Equation (6) and the fitted functions for 𝑣(𝑛) given in Equations (7) through (10), 𝑞𝑤 as 
a function of network demand was estimated for each fitted curve. The network productivity per 
unit network length as a function of demand, 𝑞𝑤(𝑛) is given in Equations (11) through (14) for 
each fitted function evaluated in this research. The total lane-miles ∑ 𝑙𝑖𝑖  of the simulated 
megaregion network was 48,864 miles.  

 
 
 
 
 
 

Figure 3(a): Linear Figure 3(b): Log 

Figure 3(c): Parabolic Figure 3(d): Sigmoidal 
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Productivity Function (Linear Fitted Curve): 
 

     𝑞𝑤(𝑛) =
𝑎𝑛2 + 𝑏𝑛

∑ 𝑙𝑖𝑖
 

 
Productivity Function (Parabolic Fitted Curve): 
 

     𝑞𝑤(𝑛) =
𝑎𝑛3 + 𝑏𝑛2 + 𝑐𝑛

∑ 𝑙𝑖𝑖
 

 
Productivity Function (Logarithmic Fitted Curve):  
 

     𝑞𝑤(𝑛) =
𝑛(𝑎𝑙𝑛(𝑛) + 𝑏)

∑ 𝑙𝑖𝑖
 

 
Productivity Function (Sigmoidal Fitted Curve): 

 

     𝑞𝑤(𝑛) =
60(𝑎)𝑛 (1 −

1
1 + 𝑒−𝑛+𝑏)

∑ 𝑙𝑖𝑖
 

 

The productivity functions were plotted in Figure 4 and display the peaking nature of network 
productivity. This suggests that there was a demand level at which network productivity was 
optimal. The optimal demand can be calculated numerically by taking the first derivative of the 
productivity function, setting it equal to zero, and solving for the demand value. However, for 
practical purposes, an approximation of the optimal demand can be found by estimating the 
demand level at the peak of the curves in Figure 4. 

 

(11) 

(12) 

(13) 

(14) 
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Figure 4: Productivity Curves 

 

The presence of an optimal demand level suggests full network productivity is not realized in 
two situations. The first is when too many vehicles are on the roadway resulting in congested 
flows and stopped queues. Congestion hinders the movement of vehicles decreasing average 
travel speed and lowering network productivity. The second situation lowering network 
productivity is when too few vehicles are on the roadway. Fewer vehicles traveling at higher 
speeds create large headways which, from a productivity viewpoint, could be used by other 
vehicles to increase overall network productivity. This may suggest that allowing light to medium 
congestion during an evacuation can be beneficial, because it increases network productivity and 
thus total trips completed within a time interval.  

With regard to model fit, the limit of the productivity function as demand approaches zero 
is lim

𝑛→0
𝑞𝑤(𝑛) = 0. Practically, this means that when no vehicles are on the network, no 

productivity is generated. This was found to be the case for all fitted curves in this research. 
Moreover, the limit as demand approaches infinity is lim

𝑛→∞
𝑞𝑤(𝑛) = 0 . This suggests that when 

demand was so high in the network, vehicles could hardly move and the average travel speed 
tended toward zero mph, and correspondingly network productivity tended toward zero vmph. 
While all four functions trended toward zero as demand increased, only the sigmoidal 
productivity function approached zero without crossing the x-axis. Because average travel speed 
can never be negative, this attribute of the sigmoidal form of the productivity function was 
assumed to be the most accurate. This suggests that the true form of the productivity is more 
closely related to the sigmoidal function given in Equation (14) than any other function examined 
in this research. 

Figure 4(a): Linear Figure 4(b): Log 

Figure 4(c): Parabolic Figure 4(d): Sigmoidal 
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A closer examination of the sigmoidal productivity functions in Figure 4, suggest that all 
scenarios are nearly identical until total network demand reached about 225,000 vehicles. After 
which the productivity for scenario 2.2 drops off considerably when compared to other scenarios. 
This finding suggests that network productivity is a function of road network and independent of 
individual trip origins and destinations, as was also concluded by Geroliminis and Daganzo (2007). 
The decrease in network productivity from Scenario 2.2 which corresponds to Strom Track 2 
resulted from having fewer destination options for evacuees, concentrating demand on fewer 
links. This caused average travel speed on these links to decrease, disproportionately, when 
compared to Scenarios 1.0, 1.1 and 1.2. This suggests that while the productivity function may 
be independent of origin and destination, limiting number of available shelters (i.e. having fewer 
destinations) during an evacuation, had a significant effect on the total productivity of the 
network. 

 

5. Model Validation 
 

Traffic simulation models are calibrated and validated to provide a statistical comparison 
between the simulated environment and the real-world. Due to the magnitude of the 
megaregion model, the standard methodology for this process could not be applied. Therefore, 
to confirm the results found in this research, the methodology was performed on an urban grid 
network. This was done to show that the evacuation productivity function is not unique to the 
megaregion model developed for this research and that the methodology can be applied to other 
study areas of varying size and structure. 

The validation road network was an urban grid consisting of 30 horizontal roads and 34 vertical 
roads. Each road was classified as an urban road type and consisted of four lanes (two in each 
direction). The grid network spanned 41 miles horizontally and 42 miles vertically and had a total 
lane length ∑ 𝑙𝑖𝑖  of 10,902 miles. For the purpose of validation, only one shelter location to the 
North was used. The simulation was conducted for nine demand levels varying between 235,178 
vehicles to 470,357 vehicles. The simulated results are given in Table 4. Similar to the megaregion 
model, a general downward trend in average travel time was observed as demand increased.   

 
Table 4: Validation Network Average Travel Speed (ATS) 

Demand (veh) 235 K 305 K 338 K 352 K 376, K 399 K 423 K 446 K 470 K 

Sim. ATS (mph) 63 58 43 40 28 24 19 17 14 

 

From the average travel speed results of the validation network a sigmoidal function of the 
form given in Equation (10), was fitted. The a, b and 𝑅2 were calculated to be 1.741, 2.938 and 
0.94, respectively. The average free flow speed of the network estimated by the fitted curve was 
approximately 99 mph. This may suggest that the model had difficultly estimating free flow speed 
which may have resulted from the uniformity of the grid network.  

The network productivity was calculated using Equation (14). The network productivity of the 
grid network was graphed alongside the average travel speed estimated by the sigmoidal 
function in Figure 5. This function was consistent with regard to the shape and magnitude of the 
productivity function estimated for the megaregion network seen in Figure 4, suggesting that the 
sigmoidal estimate of network productivity, Equation (14) was an adequate approximation.   
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Figure 5: Validation Network Results 

 

The application of the research methodology to a grid network showed that the network 
productivity function was not unique to the megaregion model. This suggests that the research 
methodology is applicable to other traffic networks and may be independent of size and 
structure. The sigmoidal approximation for productivity, 𝑞𝑤(𝑛) given in Equation (14) was shown 
to be a realistic representation in both the megaregion and grid simulations, indicating that it is 
a valid practical assumption for estimating network productivity. 

 

6. Conclusion 
 

As the speed and power of computational tools to analyze ever larger and more complex 
transportation networks increases, the volume and level of detail of the output data they 
produce will, inevitably, also grow.  Today, there are a variety of tools available to simulate the 
movements and characteristics of individual vehicles and pedestrians over vast geographic areas 
and long durations.  One of the most useful applications of these large-scale systems is for the 
simulation of regional evacuations.  Evacuation traffic simulations provide critical insights to 
transportation and emergency management officials who plan and manage emergency response 
to catastrophic disasters that can threaten millions of people.  Unfortunately, the results of these 
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simulations can be overwhelming.  Often, output data file sizes are measured in multiple 
terabytes making it difficult to assess the overall conditions of large-scale networks.   

In this study, the researchers sought to address these issues and push the limits of traffic 
modeling by simulating the traffic processes associated with an evacuation of a megaregion-sized 
network. This was done to assess the operational conditions of the network and operational 
processes of the system using the emerging concept of “Network Productivity” and “Trip 
Completion”.  The motivation for this work was based on the recent recommendations by the 
Federal Emergency Management Agency (FEMA) for states and cities to plan for the “maximum 
of maximum” disasters [20] and the desire by transportation agencies to examine the effects of 
emergency demand and capacity management techniques on mass evacuations over multi-state 
areas.  Recent studies, however, have revealed problems of evaluating data produced by 
simulations on this scale.  As a result there is a need for performance indicators and techniques 
that allow system-wide comparisons of alternatives and performance. 

The findings of this research are significant in several respects.  Most notably, they 
demonstrate the application of a novel performance and computational technique to assess the 
operation of traffic networks, system-wide, independent of their size or duration of analysis.  This 
technique is ideal for evacuation planning and alternative comparison in megaregions.  By 
estimating a function for “network productivity,” emergency management and transportation 
decision-makers can use “trip completion” as a measure of evacuee departures out of a threat 
area.  This permits a systematic and qualitative basis for assessing evacuee demand management 
(staged evacuations, route closures, etc), traffic control/management (contraflow, turn 
restrictions, ramp closures, etc.) measures that can improve regional mass evacuations. 

Using a comparison of the megaregion and validation networks the form of the network 
productivity function was found to consistent, suggesting the sigmoidal function, Equation (14) 
to be reasonable assumption. An interesting attribute of the network productivity function was 
that it was likely dependent upon the road network configuration and demand only, suggesting 
productivity is independent of origin (threat area) and destination (shelter location). The results 
of this research also suggest that evacuation network productivity and, by extension, evacuation 
trip completion exhibit a peaking characteristic. If true, this would indicate that network 
productivity can be maximized on a macroscopic scale, likely through network demand metering. 
The benefits of demand metering for interstate freeways is a well-known concept in traffic 
engineering.  However, applying these techniques on a large (megaregion) scale has not been 
explored in prior research. Previous research on phased evacuation [12] [21] has shown demand 
metering to be an effective evacuation strategy but no study has yet addressed why it is 
successful or provided a formulation to describe its impact.  

By building on the work of Geroliminis and Daganzo (2007), this research has defined a 
functional form for evacuation network productivity and illustrated its peaking nature as a 
function of demand. With knowledge of the optimal network demand, emergency planners can 
develop evacuation management plans which reach and maintain traffic at an optimal demand 
level. The results of this research indicate that when this optimal demand level is exceeded, 
evacuees are likely to experience inordinately lengthy delays such as those observed during the 
Hurricane Rita evacuation of Houston in 2005. Conversely this research suggests that demand 
levels that are below the optimal level will result in reduced overall network productivity and 
fewer trips completed per time interval.  All combined, these finding suggest light to medium 
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congestion produces the highest trip completion rate (and evacuation clearance) during an 
emergency, indicating that free flow conditions are not optimal from an overall network 
productivity viewpoint. 

In general, it was seen that the productive function appeared to take the form of a macroscopic 
fundamental diagram. With this knowledge going forward, curve fitting should resemble those 
approaches more traditionally related to the Greenshields models and the Van Aerde models. 
This suggest that more research is needed to investigate the relationship between network 
productivity and the fundamental diagrams, both on a microscopic and macroscopic scale.  

In conclusion, it is recognized this theoretical approach can present difficulties in actual 
practice. To meter demand under an actual emergency condition, evacuee entries into the 
system would have to be restricted, spatially and/or temporally, to prevent sudden surges in 
demand from overwhelming the network.  As a practical matter this could present operational 
and ethical dilemmas because some portion of a threatened population would have to be 
physically prohibited from fleeing.   
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